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ABSTRACT

Motivation: Modern methods such as microarrays, proteomics

and metabolomics often produce datasets where there are many

more predictor variables than observations. Research in these

areas is often exploratory; even so, there is interest in statistical

methods that accurately point to effects that are likely to replicate.

Correlations among predictors are used to improve the statistical

analysis. We exploit two ideas: non-negative matrix factorization

methods that create ordered sets of predictors; and statistical testing

within ordered sets which is done sequentially, removing the need for

correction for multiple testing within the set.

Results: Simulations and theory point to increased statistical power.

Computational algorithms are described in detail. The analysis and

biological interpretation of a real dataset are given. In addition to the

increased power, the benefit of our method is that the organized gene

lists are likely to lead better understanding of the biology.

Availability: An SAS JMP executable script is available from http://

www.niss.org/irMF

Contact: young@niss.org

Supplementary information: http://www.niss.org/irMF

INTRODUCTION

The ‘omic’ technologies, such as genomics, proteomics and meta-

bolomics, aim to create a numeric profile of a biological sample that

captures the state of the sample at that point of time. So whereas tens

to hundreds of samples and two or just a few groups are typically

under consideration, there can be several hundred to many thou-

sands of measured attributes of each sample. In this paper, we will

focus on microarray examples although the methods apply to any

two-way data table where there are correlations among the columns.

We will also focus on follow up studies where there are likely to be

tens of rows and hundreds of columns in the two-way table under

consideration.

The classic method for factoring a two-way table, X �¼ LSR0, is

the singular value decomposition (SVD), where X is the two-way

table with n rows and p columns, with rows representing the n
samples and columns representing the p genes, L is a matrix of

left eigenvectors and is n · k, S is a k · k diagonal matrix of eigen

values, and R0 is a k · p matrix of right eigenvectors. The relation-

ship, X ¼ LSR0, is exact if X is of rank k. The study of L, S and

R0 often gives important insights into the nature of X. Indeed, SVD

is the mathematical basis of most linear statistical methods

(Good, 1969). There is an interpretative problem with SVD; mul-

tiple, distinct mechanisms can be subsumed within a single, right

eigenvector so that great subject matter knowledge and analysis

skill can be required to draw sound conclusions from the right

eigenvectors. The elements of a right eigenvector can be viewed

as regression coefficients of regressing columns of X on the corre-

sponding left eigenvector. Also, the eigenvectors are orthogonal

and their squared elements sum to 1. All these attributes make

for good mathematical properties, but can make for problematic

subject matter interpretation. For example, genes, proteins and

metabolites could be in common over two interlocking biochemical

pathways so we should want a math/stat procedure that would not

obscure what is happening.

Recently interest has focused on a different matrix factoriza-

tion method, non-negative matrix factorization (NMF), (Lee and

Seung, 1999). Here X has only non-negative elements and the

factorization is restricted to have non-negative elements as well.

A most interesting claim is made: the factorization puts indepen-

dent mechanisms into separate vectors. This claim is still unre-

solved. There is empirical evidence to support the claim and

conditions necessary for its truth have been studied and given by

Donoho and Stodden (2003). NMF is being successfully used on

microarray data (Kim and Tidor, 2003; Brunet et al., 2004; Gao and

Church, 2005). We will focus on NMF in this paper.

From the beginning of modern statistical sciences, e.g. Fisher

(1925), statisticians and experimental scientists have been con-

cerned with multiple testing. Research workers ignore multiple

testing at their peril. A large factor in the recent, very expensive,

failure of experiments to confirm expectations (Ioannidis, 2005) can

be attributed to ignoring multiple testing, which is not surprising

as there is active teaching against multiple testing adjustments

(Rothman, 1990). Recent research on multiple testing has focused

on two strategies. One strategy is to control the probability of

making any false claim among all the questions under consideration,

the family-wise error rate (Westfall and Young, 1993). The other

strategy is to control the expected fraction of claims that are likely to

be false, the false discovery rate (FDR), (Benjamini and Hochberg,

1995). Where experimental work is expensive, difficult to replicate�To whom correspondence should be addressed.
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and claims are disruptive, FWE is a logical choice. Where follow

up work is relatively easy to do and false claims can be readily

identified, FDR is the method of choice. For the omic sciences it

is normal to follow up experiments with additional testing so we

will focus on FDR. For both FWE and FDR, it is advantageous to

be able to take into account correlation structures.

Our strategy will be to use NMF to capture correlation structures

in the dataset and then use a sequential form of testing (Kropf and

Lauter, 2002) to control the error rate of our procedure. If a rejection

is in error with probability alpha, it does not matter what you

do from then on since the maximum Type I error probability is

alpha. If a rejection is correct, you can go to the next test at

level alpha. There are two advantages of our method, increased

statistical power and easier data interpretation. We first review

non-negative matrix factorization. Next we introduce our inference-

based method to link gene sets to class labels. We give simulation

results indicating that our method is more powerful than the FDR

of Benjamini–Hochberg. We apply our method to a well-studied

dataset and note that the correlated gene sets found are supported

by biological literature. Finally, we offer some discussion of our

new method.

MATERIALS AND METHODS

Data

Golub et al. (1999) gave data for relating a gene expression from 7129

genes to disease status. There are 11 patients with acute myeloid leukemia

(AML) and 27 with acute lymphoblastic leukemia (ALL), which can be

further divided into T and B cell subtypes (19 and 8 patients, respectively).

We consider only the 5000 genes used by Brunet et al. (2004).

Dataset: The leukemia data, containing 38 bone marrow samples

hybridized on Affymetrix Hu6800 chips, is a reduced version of the original

data used in Golub et al. (1999). The URLs for data, row and column

labels are as follows: http://www.pnas.org/content/vol0/issue2004/images/

data/0308531101/DC1/08531DataSet1.txt; http://www.pnas.org/content/

vol0/issue2004/images/data/0308531101/DC1/08531DataSet2.txt; and http://

www.pnas.org/content/vol0/issue2004/images/data/0308531101/DC1/08531

DataSet3.txt.

NMF updating rules

Write the expression data as an n · p array X with rows representing the n
samples and columns representing the p genes. The updating rules proposed

by Lee and Seung (1999) can be viewed as a modification of the Gabriel and

Zamir (1979) alternating least-squares algorithm (ALS). This approach uses

all of the observed data and does not require imputation of missing data. If

the dataset is complete, this alternating least-squares algorithm gives the

first term of the conventional SVD. Note that the elements of the first term

will be all non-negative provided that the matrix X has only non-negative

cells. However, to obtain further terms of the factorization, the residual

matrix, which elements may be negative, is used so non-negativity is

no longer guaranteed. Lee and Seung modified the ALS algorithm to

handle all k terms (we give methods to select k later) of the factorization

at a time so they end up with non-negative elements as for the first term

of conventional SVD. We want to approximate X with a bilinear form

xij ¼
P

1�v�k rvicvj þ eij. We begin with a tentative estimate of the column

factors cvj and of the row factors rvi, 1 � v � k, scaled by the sum of their

elements to eliminate the degeneracy associated with the invariance of the

matrix factorization under the transformation rvi ! lvrvi and cvj!l�1
v cvj.

For any u, 1 � u � k, we consider the original array corrected for factors

other than u: ~xxij ¼ xijðruicujÞ/x̂xij ¼ ruizijc
1/2
uj where zij ¼ ðxij/x̂xijÞ c1/2

uj (note

that using · and ‚ operators guarantees the non-negativity of ~xxij). Regarding

zij ¼ ~rruic
1/2
uj þ ~eeij as a regression of the i-th row of Z on the square root of

the column factors c1/2
uj identifies ~rrui as the coefficient of a no-intercept

regression: ~rrui ¼
P

jðxij/x̂xijÞ cuj leading to the updated row factor:

rui rui~rrui after proper scaling. Then switching roles, we take the updated

row factors rvi‚1 � v � k as given and use regression of all non-empty

cells in exactly the same way to calculate fresh estimates of the column

factors cvj.

Lee and Seung show that their algorithm leads to the minimization of a

divergence criterion. Here we show that their algorithm is essentially a

modified form of the ALS algorithm. The most striking difference between

Lee–Seung and Gabriel and Zamir algorithm is in the multiplicative updat-

ing rule, which guarantees that row and column factor elements will remain

non-negative throughout the iterative process.

Clustering

For each observation (row of X), the elements of the left eigenvectors

put weights on the right eigenvectors. These define class characteristics

so each observation can be assigned to the class for which it has the highest

weight. Likewise, the columns of X can be assigned the number of the right

component with the highest element.

Sparse NMF

A sparse matrix is one among those elements are zero or near zero. There

are at least two reasons to try to form sparse eigenvectors: it is very unlikely

that all genes are involved in a specific mechanism, and sparse vectors are

easier to interpret. Hoyer (2004) suggested a sparseness constraint on eigen-

vectors within the updating rules of NMF. We use a simpler algorithm,

which takes advantage of the local nature of found solutions. First, we

let the process converge for a set number of iterations, we then fix the

smallest elements of the right (or left) eigenvectors to zero for a small

number of iterations, and then we let the process continue.

Sequential procedure

The original approach of NMF, as described above, is stochastic: Choose

a number of components k, guess a set of k left and right eigenvectors,

and apply updating rules. If k is large, the numerous guesses increase the

risk of converging to a local minimum. Brunet et al. (2004) propose to

repeat the whole process many times and build a consensus matrix to see

whether results are consistent across different trials. In contrast, our imple-

mentation of NMF is more directed. The idea is to build intermediate matrix

factorizations starting from robust estimates of the column effects of the

residual matrix. We start with one component and guess a set of column

markers (trial right eigenvector) using the column medians. We also need to

guess row markers (trial left eigenvector) before updating rules start, so we

set them all to 1. We use the same strategy each time we add a new com-

ponent into the model, except that we use the column medians of x̂xij/xij where

the approximation x̂xij is from the preceding model. The sequential procedure

facilitates our implementation of robust NMF.

Robust NMF

To make the method robust to outliers in the original table, we use a

Least Trimmed Square approach as for robust SVD (Liu et al., 2003).

We identify the most discordant observations and remove them from the

fitting process. The outlier list is updated as the factorization proceeds. To

start the process, elements are selected at random for the outlier list so our

robust LTS implementation is stochastic. This is actually the reason why we

apply a sequential procedure. We could not reasonably nest one stochastic

process within another, as computation time would be excessive.

Optimal number of components

In developing an approximation to the matrix X, the number of right and

left eigenvectors, k, needs to be specified or determined. Our method for

finding the optimal number of components, k, is adapted from Zhu and

Ghodsi (2006). One assumes that eigen values follow a mixture distribution

of two normal distributed populations, the first one corresponding to
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the components that should be selected. We calculate the profile likelihood

for any hypothesis of k significant components under the assumption that

both populations have same standard deviation. We select the hypothesis

number that has the highest profile likelihood. In a complementary test, we

take advantage of the non-orthogonality of eigenvectors, which is specific

to NMF. For a number of components k, we calculate the determinant of the

k vectors
a
Xu‚1 � u � k after proper normalization, where

a
Xu is the approx-

imation to X obtained with u components, reshaped into a column vector. As

long as each component carries specific signal, this determinant is smoothly

decreasing. An abrupt decrease in the determinant reflects a high level of

correlation between the last introduced component and the preceding ones,

suggesting that most of the signal is already explained.

Inference

Assume that rows of the matrix correspond to samples of different types or

classes (e.g. control, disease or drug groups) and columns correspond to

response variables. As it is likely that only a limited number of response

variables are linked to each class label, we are interested in finding such

variables or ‘predictors’ that would allow predicting the class of any sample

which type is unknown. Non-negative matrix factorization is used to create

ordered sets of response variables. Here each set corresponds to a particular

right eigenvector, which has been ordered by decreasing values of its ele-

ments. It is important to note that the ordering is totally unsupervised (the

information on sample group is not used). In order to identify predictors, we

take advantage of the ordering of variables within each set and test each

variable sequentially so there needs be no correction for multiple testing

(since the ordering is not supervised) (Kropf and Lauter, 2002). This sequen-

tial form of testing controls the error rate of our procedure and leads to an

increase in statistical power as shown by our simulation results (see next

section). Finally, we link each set of predictors to the class label of the top

element of the corresponding ordered left-hand eigenvector.

Gene expression levels typically vary on different scales, and the impact

on matrix factorization and subsequent ordering of variables should be

considered. Just as the prime factors of 225, 15· 15, are larger than

those of 25, 5 · 5, genes with larger variance will have larger elements in

the right and/or left eigenvectors. If there is a control group, the variances of

the genes can be normalized using this group. If there is no such control

group, our sequential testing procedure will likely be corrupted by genes

with high variance. Two things to note: first, it is important to remove

outliers or genes with outliers before applying our method and second,

the profile likelihood method can be used to find the real elements within

an eigenvector.

RESULTS

Simulations

As we can test genes within an eigenvector without any adjustment

for multiple testing we expect greater statistical power.

Two groups: We considered one normal and one treated group

with following settings for the numbers of regulated genes

(Table 1). Upregulated and downregulated genes were simulated

in equal proportion.

Three groups: We considered one normal, N and two treated

groups, T1, T2, with following settings for the number of regulated

genes (Table 2). Upregulated and downregulated genes were simu-

lated in equal proportion. Note: Some genes are induced by both

treatments.

Baseline expression:

(i) Normal genes (Normal Baseline): 100

(ii) Upregulated genes: 1.5 · Normal Baseline

(iii) Downregulated genes: 0.67 · Normal Baseline

Distribution: We used a log-normal distribution:

Gene expression ¼ Baseline · expðNð0‚0:25ÞÞ:

For support on the choice of this distribution, see Durbin et al.
(2002). Note: since exp(1.5 · 0.25) ¼ 1.45, nominal modulation

levels 1.5 and 0.67 ensure strong overlapping between distribution

of unregulated and regulated genes.

Correlation structure: We added a correlation structure

between regulated genes in the following way:

(i) For each mechanism, set up a common profile:

ProfileðT1Þ ¼ Baseline · 1:5 · expðNð0‚0:25ÞÞ
ProfileðOtherÞ ¼ Baseline · exp ðNð0‚0:25ÞÞ

(ii) For each gene that belongs to the same mechanism, add

Poisson noise to the profile:

Measured Expression ¼ l · Random PoissonðProfile/lÞ:

The parameter l allows controlling the correlation level

through adjusting the standard deviation of the Poisson dis-

tribution (since sðPoisson½m/l� · lÞ ¼
ffiffiffiffiffiffi
ml
p

). In the simula-

tion, we used l¼ 2, which ensures a correlation level ranging

between 0.7 and 0.9.

Methodology: We compared two methods for selecting genes:

(i) ANOVA with multiplicity correction using a linear step-up

procedure, Benjamini and Hochberg (2000), to control FDR at

nominal level 0.05 and 0.025 [where the number of regulated

genes is estimated through Storey (2002)].

(ii) Sequential ANOVA, where the order of hypothesis is defined

by the order in which genes appear in NMF components.

Table 1. Two groups: we considered one normal and one treated group with

following settings for the numbers of regulated genes

No. of regulated

genes

No. of unregulated

genes

% Regulated

genes

20 80 20

40 160 20

40 360 10

40 760 5

Upregulated and downregulated genes were simulated in equal proportion.

Table 2. Three groups: We considered one normal, N, and two treated

groups, T1 and T2, with following settings for the numbers of regulated genes

No. of genes

regulated

by T1

No. of genes

regulated

by T2

No. of genes

regulated by

T1 and T2

No. of

unregulated

genes

% Regulated

genes

6 6 8 80 20

10 10 20 160 20

10 10 20 360 10

10 10 20 760 5

Upregulated and downregulated genes were simulated in equal proportion. Note: Some

genes are induced by both treatments.
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Alpha-level is set at 0.05 and 0.025. We test only the compo-

nents associated with any of the two treatments. To identify

those components, we look at the top elements of the left-hand

eigenvectors. If the corresponding samples belong to any of the

treatment groups, then we decide that the corresponding right

eigenvector is linked with this treatment group and we run

sequential ANOVA on this particular component. Note that

NMF is run actually twice: on the original raw data and on the

inverse of raw data to detect separately upregulated and down-

regulated genes. To ensure maximal power of our procedure,

no Bonferroni correction is applied over the sequences.

In both cases, ANOVA was run on log data, given the distribution

model used. NMF was run with two and three components for the

2 groups and 3 groups design, respectively.

Simulation results: The following results are based on 100 runs

for each setting of the experimental design:

(i) False discovery rate and power: FDR is lower and power is

higher. Note that at alpha level¼ 0.05, sequential ANOVA

ensures FDR < 0.025. We can therefore compare the power

of sequential ANOVA at alpha level 0.05, Table 3 (2 groups,

level 0.05) and Table 4 (3 groups, level 0.05), with the power of

BH ANOVA at FDR level 0.025, Table 3 (2 groups, level

0.025) and Table 4 (3 groups, level 0.025). If we do so, the

difference in power is even more substantial (e.g. in the

3 groups simulation >20%).

(ii) Family wise error: Since we use uncorrected alpha in our

ANOVA test, for the 2 groups simulation we apply sequential

testing on 2 components twice (for up and downregulated

genes) so we expect FWE¼ 2 · 2 · alpha ¼ 0.20 and

0.10 at the 0.05 and 0.025 level, respectively. In the same

way, for the 3 groups simulation we expect FWE ¼ 2 · 3 ·
alpha¼ 0.30 and 0.15 at the 0.05 and 0.025 levels, respec-

tively. The observed percentages are consistent with theory.

Biological example

Brunet et al. (2004) note that the leukemia dataset has become a

benchmark in the cancer classification community. To compare

their results with the output of our robust NMF, we ran the analysis

on the same 5000 genes and found essentially the same results when

we asked for two and three components: the biological distinction

among AML, ALL_B and ALL_T subtypes was precisely recov-

ered. Here we focus on a four-component model, which further

divides the ALL_B samples into two subtypes ALL_B1 and

ALL_B2. Scree plots and related tests, Zhu and Ghodsi (2006),

suggest that this model should be optimal.

Brunet et al. (2004) note that the separation of ALL_B into

two classes ALL_B1 and ALL_B2 is clear by their model selection,

but its biological significance is unclear. We used the profile like-

lihood method described in the Materials and methods section to

identify the genes that are responsible for the separation into two

Table 3. Two groups, levels 0.05 and 0.025

BH ANOVA Sequential ANOVA

FDR (%) Power (%) FDR (%) Power (%) FWE (%)

2 Groups, level 0.05

20% Regulated genes, 100 genes 6.9 47.8 1.7 61.6 20.0

20% Regulated genes, 200 genes 5.3 49.0 1.0 58.8 22.0

10% Regulated genes, 400 genes 5.7 34.2 1.7 59.3 31.0

5% Regulated genes, 800 genes 2.7 19.4 1.3 59.5 30.0

2 Groups, level 0.025

20% Regulated genes, 100 genes 4.5 38.1 0.6 55.0 8.0

20% Regulated genes, 200 genes 1.9 40.3 0.5 50.2 13.0

10% Regulated genes, 400 genes 4.0 24.5 0.6 47.2 13.0

5% Regulated genes, 800 genes 1.8 17.3 0.6 49.8 13.0

Table 4. Three groups, levels 0.05 and 0.025

BH ANOVA Sequential ANOVA

FDR (%) Power (%) FDR (%) Power (%) FWE (%)

3 Groups, level 0.05

20% Regulated genes, 100 genes 4.8 62.2 2.4 73.1 33.0

20% Regulated genes, 200 genes 4.9 64.5 1.2 70.3 31.0

10% Regulated genes, 400 genes 4.5 50.1 2.2 66.4 44.0

5% Regulated genes, 800 genes 3.9 31.1 2.6 61.3 39.0

3 Groups, level 0.025

20% Regulated genes, 100 genes 2.5 46.4 0.9 64.8 13.0

20% Regulated genes, 200 genes 2.4 49.9 0.8 60.0 21.0

10% Regulated genes, 400 genes 1.6 30.6 0.9 52.0 18.0

5% Regulated genes, 800 genes 1.2 20.5 1.4 50.7 23.0
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subtypes and obtained two clusters of genes as each subtype was

linked to one right eigenvector (Fig. 1).

We further examined the biological relevance of these clusters.

Following the exclusion of unmapped gene IDs and gene repeat, the

classification of genes eligible for generating classes linked to

ALL_B1 and ALL_B2 was finally performed with �80% of the

initial gene lists, namely cluster1 and cluster 2 lists.

The Cluster 1 list of 33 genes (Supplemental information)

includes genes coding for proteins known to be involved in the

immune response and lymphatic system development (16 genes)

(Fig. 2). Among them, several genes are related to the major his-

tocompatibility complex (MHC) class II, which are involved in the

presentation of antigenic peptides to T cells, such as HLA-DMA,

HLA-DPA1, HLA-DPB1, HLA-DRA, HLA-DRB1 and CD74. As

expected, these genes are mostly expressed in ALL-B, to a lesser

extent in AML, but not in ALL-T.

Several genes, VPREB1, TCL1A, IGHM, CD79A or TCF4,

are selectively expressed in ALL-B, and are related to genes

expressed at the early stage of B-cell development, which

characterize ALL-B. In addition, CXCR4, expressed in all samples,

is strongly upregulated in ALL-B, up to 4-fold over AML and

ALL-T. This gene encodes a chemokine receptor involved in

pre-B cell growth stimulating that has been recently described to

be antagonized by CD24 selectively expressed in ALL-B (Schabath

et al., 2006). The co-expression of CD24 and CXCR4 might con-

tribute to altered hematopoiesis in acute leukaemia.

The cluster 2 list of 169 genes (Supplemental information)

includes many of cluster 1 genes (16 genes) required to differentiate

ALL-B from ALL-T and AML. Cluster 2 contains additional genes

necessary for the identification of the two ALL-B subtypes (Fig. 2).

We first identify a set of genes reflecting the immune

response mechanism involving both antigen presentation and

immunoproteasome pathway. In addition to the cluster 1 genes

already described, there are genes related to MHC class I (HLA-

E and HLA-F), which have been related to intracellular peptide

presentation, with a 2-fold increased expression level of HLA-E

in ALL-B2 compared with ALL-B1, ALL-T and AML. These

peptides are generated during the degradation of intracellular

proteins by the proteasome. Also in this set of genes are several

genes related to 20S immunoproteasome that are predominantly

expressed in ALL-B2 subtype, 2-fold higher than in ALL-B1,

such as PSMA4, PSMA6, PSMB1, PSMB10 (MECL1), PSME2,

in addition to PSMB8 (LMP7) and PSMB9 (LMP2) more specif-

ically expressed in ALL-B2 compared with other leukemia. PSMB8

(LMP7), PSMB9 (LMP2) and PSMB10 (MECL1) are INF-g-

inducible subunits that have been shown to be strongly expressed

in lymphoid tissues. In addition, concentration of proteasome

have been reported to be abnormally high in leukemia cells

(Kumatori et al., 1990) and support the recent interest for specific

inhibitors of proteasome as therapeutic target in cancer therapies

(Spano et al., 2005; Schabath et al., 2006).

Continuing the discussion of cluster 2, we identify a second set

of genes reflecting the proliferative status of ALL-B2 compared

with ALL-B1. This set of genes includes several genes related to

DNA repair, transcription and replication, which seem to be differ-

entially regulated in the two classes of ALL-B. Some of these genes

are overexpressed in ALL-B2, such as HMGN1, HMGN2, CHD4,

H3F3A, SMARCA4, TOP2B that play important roles in the

regulation of transcription. Genes related to DNA replication

are also overexpressed in ALL-B2 such as HMGB2, NAP1L1

as well as SSBP1 involved more specifically in mitochondrial rep-

lication. Numerous genes related to RNA splicing are highly

expressed in ALL-B compared with other leukemia, with at least

a 2-fold increase expression level in ALL-B2 compared with

ALL-B1 (HNRPA1, HNRPA2B1, HNRPF, SFRS3, SFRS5,

SFRS10, SFRS11, SNRPE, SNRPN, U2AF1). As might be

expected, this set of genes also includes cell cycle-related genes,

such as CCND3 and CCND2, that are checkpoint regulators of the

progression from G1 to S phase of the cell cycle, and show upregu-

lation in ALL-B2. The gene CCNG1 is associated with the progres-

sion from G2 to M phase and is selectively expressed in ALL-B2; it

has been recently defined as a host risk factor for treatment-related

myeloid leukemia (t-ML) (Bogni et al., 2006). Increased expression

of these cyclins strongly supports the more proliferative status of

ALL-B2. We can also include PCNA gene, frequently used as a

proliferation marker that is predominantly expressed in ALL-B2

and ALL-T (2-fold above the expression level observed in ALL-B1

and AML samples). Moreover, the gene CD81, which plays an

Fig. 1. Schematic view of genes distinguishing ALL_B1 from ALL_B2.

Fig. 2. Biological functions of the most discriminating genes.
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important role in positive regulation of B-cell proliferation, is

upregulated in ALL-B1 (2-fold over AML and ALL-T) and

ALL-B2 (3-fold over AML and ALL-T).

In addition, the cluster 2 list includes genes related to electron

transport chain (COX5A, COX5B, COX7B, UQCRB, UQCRFS1,

UCP2 and NDUFV2) involved in energy production. Only 5 out

of 33 genes (cluster 1) demonstrate downregulated expression pat-

terns in ALL-B2 compared with All-B1: HBA2, HBB, HSPB1,

SOX18 and SRP68.

Taken together, upregulation of the expression of ALL-B2

genes may mainly reflect a more proliferative nature of ALL-B2

compared with ALL-B1, with higher rate of transcription and

replication processes, more proteasomal activity and more energy

production. This ALL-B2 subtype is also characterized by specific

expression of recently identified surface antigen CD164 and is

for the first time associated with the expression of KLRK1 receptor,

normally expressed by natural killer cells and CD8(+) T cells, and

involved in cell cytotoxic response.

Note that for gene clusters given by WebGestalt (Zhang et al.,
2005), P-values are given. P-values are based on a hypergeometric

test; all of them are quite significant.

DISCUSSION

When and why will this analysis strategy, inferential robust

non-negative matrix factorization, irNMF, work? The strategy is

conceptually simple. First, non-negative matrix factorization is used

to create groups of genes that are moving together in the dataset.

The error rate to be controlled is allocated over these groups. Within

each group, genes are tested sequentially. The strategy should be

effective if there are sets of genes moving together so that group

formation reflects biological reality. For example, if cancer cells are

compared with non-cancer cells, there are likely to be large blocks

of correlated genes that differ between the two cell types.

As we do no multiple testing adjustments within the sequence of

genes, we should have higher power and simulations support higher

power for irNMF. Sets of genes are identified so the biological

interpretation should be more straightforward and we think that

it is for the Golub dataset.

On the leukemia dataset, our robust implementation of NMF

gives four, almost perfect, clusters with only one AML misclassified

among ALL_B1 samples; the standard implementation resulted

in two errors. Also, on the computational side, convergence was

obtained in one-third the number of iterations of the standard NMF

updating process.

SVD attempts to separate mechanisms in an orthogonal way,

although nature is all but orthogonal. As a consequence, SVD com-

ponents are unlikely to match with real mechanisms and so are not

easily interpreted. On the contrary, NMF appears to match each real

mechanism with a particular component.
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